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An algorithm for the symbolic computation of wave evolution equations using 
REDUCE is developed. Its use is demonstrated for the class of long waves at the inter- 
face between immiscible fluids. Extensions to other problems are indicated. 

In fluid mechanics as well as other areas of applied mathematics the need to 
obtain analytic solutions to systems of partial differential equations often requires 
large amounts of symbolic manipulation. Such manipulation is often tedious and 
unrewarding; in addition there is always the danger of introducing a random error 
that would invalidate the final result. When these manipulations are of a repetitive 
nature as with asymptotic expansions, it would seem efficient to program them for 
machine computation. 

There have long existed precise algorithms, consistent with the definition of 
Knuth [II], to solve analytically certain classes of partial differential equations. 
An algorithm is a finite set of rules which give a sequence of operations for solving 
a specific type of problem, and which possesses the characteristics of finiteness 
definiteness, input, output, and effectiveness. Because these algorithms involve 
symbolic rather than numeric computation, they have not been easily implemented 
as machine computations. 

Recently, however, new computer languages which primarily manipulate logical 
expressions rather than perform only numeric operations have appeared. These 
languages, such as REDUCE and LISP, may be used to implement computationally 
complex algorithms to achieve analytic solutions to systems of partial differential 
equations. 

In this paper we shall discuss the development and programming of an algorithm 
in REDUCE to solve a moving boundary problem in fluid mechanics. The solution 
technique [2] in this case involves expressing the solution to an elliptic equation, 
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in which there exist disparate length scales, in terms of the function describing the 
moving boundary. The equation describing the moving boundary is then deter- 
mined by substituting the expression for the interior function into a constraint 
applied at the surface. This procedure results in an equation for the behavior of 
the surface. The algorithm thus allows generation of a wave evolution equation for 
the surface. 

1. PROBLEM STATEMENT 

The class of physical problems under discussion is that of long waves at the inter- 
face of two fluids [9, 13, 181. Such waves are known to occur under circumstances 
typified by the absence or relative unimportance of body forces such as gravity 
which tend to hydrostatically damp such waves. We have chosen to treat one of the 
simplest of these physical problems, that of two-dimensional flow of a viscous 
liquid film down an inclined plane. The liquid flow is taken to be very viscous, and 
the adjoining gas phase is assumed to exert no traction on the fluid. If y is the 
distance normal to the bounding solid surface, we denote the interfacial position 
by y = h(x, t) (see Fig. 1). The aim of the calculation is thus to develop an 
algorithm to generate the evolution equation for h(x, 1). 

The key to the successful description of the class of waves under discussion is the 
recognition that for long waves, there exist two length scales for the motions which 
are widely separated. The first scale is that of the film thickness h, and ifthe motion 
is highly U~SCOZLS, it is the correct uniform scale for the motion in they direction. The 
second scale is the wave length, A, and the assumption for the problem in this 
paper is that h > h. This relation is an extremely well-justified condition for 
interfacial waves, since (in the language of linear stability theory) the neutral curve 
for self-excited waves bifurcates at or near the origin in the wave number, Reynolds 
number plane. Thus, long waves represent the most dangerous mode of disturbance 
and are expected to be the ones observed experimentally. 

Fhx 1. Geometry of falling film. 
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For two-dimensional flow the Navier-Stokes equations may be reduced to one 
equation for the stream function $ defined such that (u, u) = (#,, , -#&. 
We further introduce a stretching of the x and t dependence so that derivatives 
of any function with respect to any independent variable are O(1). The scalings 
for dimensionless variables are given by 

($9 P, h) = (~‘h&o , P’h,/~~, 2 h’lh,). 

Here primed quantities are dimensional, h, is the Nusselt film thickness, i&, the 
average velocity. The quantity c1 is a dimensionless wave number, i.e., (Y = 27&/X, 
and for long waves becomes a small parameter. The complete nonlinear dynamical 
equation for I@, t, y) is 

4 uuwu = &hw + hL - h,U - 2+Lv 

+ ~3WL - $4l!94cw + vMm!,> - ~4*mm - (1.1) 

R is the film Reynolds number consistent with this scaling, and in this context is 
taken as an 0( 1) parameter. 

The equation must be solved subject to the following five boundary conditions 
[I]: The no slip conditions aply at the wall 

tjE = 0 at y = 0, 0.2) 
#, = 0 at y = 0. U-3) 

The stress conditions apply at the interface. 

t$L - ~2!L~tl - a2hz2) - 4Lx2h,~~r,, = 0 at y = h(x, t), (1.4) 

L + 3 + ~“*m, - 4*t, + *v9*, - 9wYY) 

- ~2b,La - 3&z cot B - ~*b,bz, + ~“~,tqk + h4x - +&,3 

+ 2~2kzz + AwAJ + 8~4tL,th&~~ + 24kz%m> + 3~“h5LJ) 
+ ~RPhm + 3~2(-l/2hz%m - h&J 

+ 15014(1/8h,,,h,4 + 1/2h;&h,s) + 35c?(-1/16h,‘h,,, - 3/8h,sh”,&] 

+ 4~*hz2(&mo + &,,hz)(l + a2hz2 + a4k4) + o(d’) = 0 
at y = h(x, t). (1.5) 

Here P = o12We, where We is the usual Weber number; We = a/h,,iio2p. P is a 
convenient surface tension parameter since it is at most O(1) for liquids with high 
surface tension such as water and alcohol, but has somewhat smaller values for 
viscous oils [I 1. @is the angle of inclination of the plane (c.f. Fig. 1). Finally we have 
the kinematic condition at the interface 

ht + h,yL + qb = 0 at y = h(x, t). (1.6) 

5w1311-4 
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The method of solution will develop the stream function # as a function of h 
and its derivatives. Thus, we write $ = $(h(x, t), y), and @r, h) represents # 
evaluated at y = h(.x, t). Some analysis shows that the kinematic condition may 
be written more compactly as below [I]. 

h + [$wi Nle = 0. (l-7) 

It is thus in the general form of a conservation law, and expresses the fact that the 
interface is a material surface. 

The five boundary conditions thus provide sufficient conditions for the deter- 
mination of # and the interfacial position h(x, t). Following the technique described 
in [2], the first four boundary conditions are used to solve for the stream function 
in terms of the unknown function h(x, t). The last boundary condition serves as a 
constraint which gives an equation to be solved for h(x, t). Solution of this last 
equation then completes the solution to the problem. 

2. THE LONG WAVE EXPANSION 

In order to solve for #, we utilize a regular perturbation technique known as 
long wave expansions. Benney [4] first proposed the use of long wave expansions 
in this context, and they have been applied by Gjevik [5,6] and Krantz and 
Goren [12] to the present problem, and by Roskes [15] to the related three- 
dimensional problem. 

We expand z,L asymptotically as 

# = : ,k#(k). (2.1) 
k=O 

The equations describing each successive #tn) are determined by substitution of 
(2.1) into (1.1-1.5) and grouping like powers of 01. The sequence of J,P) are then 
determined by successive integrations. The first two differential systems were given 
by Krantz and Goren [12]. Because they clarify the treatment of more complicated 
higher orders, we present them here. 

(0) 
* 09 YW2I = 
at y = /2(x, t), 

at y = h(x, t), 

at y = 0, 

at y = 0, 

(2.2) 

with solution 
#(O) = 3/2( y‘% - l/39). (2.3) 
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The differential system of order 01 is 

at y = h(x, t), 

at y = h(x, t), *;; = 0, (2.4) 

at y=O, l/p = 0, 

at y = 0, l/p = 0, 

with solution 

4”’ = --y2{R(3/4h2ht + 3/4h4hz) + 312 cot/3 hh, - 1/2PRhh,,,} 

+ y3{1/2 cot/3 h, - 1/6PRh,,,} + R{1/8h,y4} + 3/40Rhh,y5. (2.5) 

As might be expected, the complexity of the expressions increases with the order 
of the approximation. Hand computation beyond 4(l) has all the pitfalls mentioned 
in the introduction. Unfortunately, understanding the physics of the problem will 
require higher order terms [l], and machine computation becomes very appealing. 

3. ALGORITHM FOR MACHINE COMPUTATION 

The first step is to obtain all the necessary equations and boundary conditions 
to solve for each function. The necessary manipulations described in the previous 
section are easily performed using the capabilities of REDUCE. Only a very few 
program instructions are required, and the resulting equations are in a format 
suitable for further machine manipulation. The sets of equations for functions 
through #*) have been generated. The flowsheet for the generation of these sets 
is given in Fig. 2. 

Once the perturbation equations have been generated, straightforward inte- 
gration and substitution would be the usual procedure. Because the computations 
are to be done via computer; however, careful analysis of the properties of the 
system is necessary for computational tractability and efficiency. 

Inspection of the differential equations generated reveals that each is of the form 
of a fourth order derivative with respect to y, with a forcing function in terms of 
the known z,P--l), #(“-2) ,..., #to). 

# kLy = f(t)‘“-“, lp2) )...) IpO)). (3.1) 
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FIG. 2. Flow chart of program for the computation of the perturbation equations. (1) D(“‘!P 
is read as normal algebraic expression. For example D@)!P = (ul,, - asY,,,,)(l - or%,') - 
4&,YW . The expression must be given in REDUCE syntax. (2) This statement causes all declared 
substitutions for expressions in the rhs to be performed. (3) This statement causes the coefficients 
of the powers of a to be assigned to the array AK. 
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Experience with #(O) and z,P reveals that if the indicated substitutions are per- 
formed the differential equations take the following form: 

* kLy = $ gp)yi, n = 0, 1,. . . , (3.2) 
i=O 

{tn} = (0, 1, 5, 9 ,..., t,-, + 4 *a*}, 

where the gicn) are functions of x and t through explicit dependence on h(x, t) and 
its derivatives h, , ht , hSt, etc. 

gin) = gi’“‘(h(x, t), ht , h, , Ii,, )... ). (3.3) 

Inspection of Eqs. (3.2) and (3.3) reveals that a separation of variables has been 
effected. This makes solution for Ilrtn) a fairly straightforward procedure. 
Equation (3.2) may now be trivially integrated to give 

t)(n) = z. (i + 4)(i ,g!;y’; 2)(i + 1) + cpy3 + CP)y2 + cpy + CF. 

(3.4a) 

The constants C!?) are to be determined by the boundary conditions: D(o)#(n), 
DW,W, D2)t,Un), D3)~cn). Since the stream function is determined to within an 
additive constant, we define the solid surface to be represented by the streamline 
$ = 0 and replace the boundary condition tjr’(O) = 0 by 

D’o’p”’ E g(n)(o) = 0. (3.5) 

Thus C$‘) is zero for all n. A similar general result comes from application of 
D'l'#n'. 

D"'$'d ~ yp(O) = 0. (3.6) 

Thus Cp’ is zero for all n. Equation (3.4) may be simplified to 

ip’ = g) @ + 4)(i .$;g+; 2)(i + 1) + cpy3 + cpy2. (3.4b) 

The boundary conditions at the interface do not yield Cp) and Cp’ so easily. 
They are of the following form at y = h(x, t) 

D’3’,j’n’ = $(& -f3(@‘-1’, ~(n-2),~~~, #to)) = 0 (3.7) 
D(2)@d = $2) -f2(pa-l' @n-2) 

3 ,..., zpO)) = 0 (3-g) 
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First the substitutions are made for the lower order functions which results in an 
expression similar to the right side of (3.2). Then (3.4b) is substituted into (3.7), 
and it is solved for Cp’; Cp) and (3.4) are substituted into (3.8), and it is solved 
for Cp’. 

Our results to this point may be summarized by the following set of equations. 

Ed = gi(nygp, gi(ca-2) )...) gi’o’), i=() t’- ,.‘., n 3 (3.9a) 

gk!4 = EP/<i + 4)(i + 3)(i + 2)(i + l), i=O t * ,***, n 3 (3.9b) 

gi (n) = ca(n) = ci(ygj(n-1) )...) gj’o), g3!n)), i = 2, 3; 

where r, = t, + 4. (3.9d) 

It is convenient to express the coefficients of the differential equationgp) in terms 
of the coefficients of the previous functions, gy-j), as in (3.9a). (3.9b, c, d) follow 
from the previous discussion. The computation of z,P is completed by performing 
the sequential substitutions (3.9a, b, c, d) to arrive at @“)(h(x, t), y) as desired. 
The algorithm is summarized in Table I, and the corresponding flowsheet is 
presented in Fig. 3. 

TABLE I 

Algorithm for the Computation of Regular Perturbation 
of the Stream Function to Order # 

Step 0: n + 0, Input N 

Step 1: Input D(B)#(n), D~2$W 

Step 2: If n = 0, go to 4 

Step 3: #(n-j) --t xgg:“)y” into 3.1, 7, 8 for j = l,..., n 

Step 4: Substitute 3.4b into 3.7, y ---f h, Solve for Gin) 

Step 5: Substitute 3.4b, CiR) into 3.8, y + h, Solve for Cr’ 

Step 6: Substitute gy-‘), j = l,..., n into 3.9a, b, c 

Step 7: Output g;-91, j = O,..., 7, 

Step8: n-+n+l 

Step 9: If n < N, go to 1; if not, stop. 
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4. IMPLEMENTATION OF THE ALGORITHM 

The algorithm of the previous section was implemented using programs in 
REDUCE [3]. REDUCE is a language designed for general algebraic computation. 
It involves the manipulation of logical expressions, not numbers. Its capabilities 
include expansion and ordering of rational functions of polynomials, symbolic 
differentiation, substitution and pattern matching, simplification of expressions, 
and other capabilities not germane to this work. Complete details on REDUCE 
are provided by Hearn [7, 81. 

The computations were carried out in batch runs using an IBM 360/67. At 
present REDUCE is imbedded in LISP 1.5, and thus, both the REDUCE translator 
and LISP compiler must be present for execution of a program. In addition very 
large amounts of core are required to represent symbolic expressions, especially 
the complex derivative expressions that are common in this computation. The net 
result is to restrict the amount of computation that can be done with any one 
program. 

A long sequence of computations, thus, cannot be performed with only one run. 
Instead computations must be carried out until the expressions generated have 
filled the available core. The results are written on a disk in a format compatible 
with REDUCE by very simple commands, and become statements in the program 
for the next computation. The file handling facilities are very convenient. 

Despite the drawbacks presented by the storage problem, REDUCE is a very 
useful tool for symbolic computation. It is fairly easy to learn and concurrent 
knowledge of LISP is not essential. Once one become familiar with the language 
and its limitations, it is fairly easy to carry out long, detailed computations for 
analytic results. 

5. RESULTS 

To date functions up through $t3) have been computed and appear in print for 
the first time. 

The expressions for gi2) and gj3) are available from the authors upon request. 
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The terms $(z)(h, h) and I/@)@, h) necessary for the kinematic condition are given in 
the Appendix. 

Gjevik [6] and Benney [4] have published forms of #(2)(h, h) with the time deriv- 
atives eliminated; Benney also neglected surface tension. The corresponding forms 
of our result do not agree with theirs. Neither author gives full details of the 
development but it is likely that the discrepancies are due to algebraic errors. 

This method should be contrasted with a technique of Van Dyke [17] for machine 
computation of perturbation solutions. Van Dyke uses numeric computation 
to generate the coefhcients and exponents of high order terms from a general 
expression for such a term. This technique is not applicable to this problem 
because the x- and t-derivatives in the boundary conditions cause continued 
expansion of coefficients of y through 8gjn-j)/8X, agp-j)/at terms in going from 
expressions like (3.1) to expressions like (3.2). No general expressions for I/I(~) of 
the type required by Van Dyke may be found, because symbolic differentiation of 
an unknown expression, generated later, may not be done numerically. 

It should also be noted that singular perturbation or matched asymptotic 
expansions could also be computed in this manner. Sequences of functions would 
be generated and steps to implement matching would be added. The algorithm 
would be more complex however, since one would have to ensure that at each 
level of matching, solutions of proper order had been computed in each region. 
It is well known that in such problems, the asymptotic expansions are seldom 
simple power series as was the case here. 

6. GENERATION OF EVOLUTION EQUATIONS 

The next step in solving the flow problem is to substitute the computed 
expressions for $(n) into the kinematic condition. 

(ah/at) + [$‘O’(h, h) + ayP(h, h) + c2$w(h, h) + a%p(h, h)***]z + O(d) = 0. 

In so doing we obtain a parabolic evolution equation describing the wavelike 
behavior of the liquid surface. 

There is a great deal of interest in the study of model nonlinear wave equations 
such as the Korteweg-de Vries equation [16, 191. An important problem is 
determining the solutions and behavior of the relevant wave equation. Just as 
important is the derivation and physical relevance of the model equation. 

The method of derivation used in this work [2] has two advantages over the 
usual method of derivation such as that of Mei [14] and Su and Gardner [16]. 
The first is theoretical. The evolution equation presented above is valid for any 
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amplitude wave motion and to any wave number consistent with the approximation 
chosen. The usual methods derive equations restricted in amplitude as well as 
wave number. This point is not to say, however, that a further simplification of the 
surface equation will not be required in order to effect a solution. 

The second advantage of this method is that it is computationally compact. 
Only one sequence of functions must be found in the process of deriving the 
evolution equation. As many as three sequences of functions may be sought in 
other methods. This compactness is very important considering the difficulty of 
storing the complex, higher order expressions. 

7. CONCLUSION 

The use of symbolic computation languages such as REDUCE or LISP in 
computing asymptotic expansions and in deriving evolution equations for an 
important class of long interfacial waves has been successfully demonstrated. 
The results are attractive on two counts. The evolution equations so derived are 
compact and are capable of describing long waves of arbitrary amplitude. The 
algorithm is conceptually simple and may be easily applied to any related problem 
of interest. 

Previous explicit results for viscous film flow down an inclined plane have been 
extended to fourth order in wave number. Expansions to this order are thought to 
be capable of providing quantitatively accurate descriptions of wave evolution and 
equilibration for this problem and the solution to these equations will be the subject 
of a later publication. 

APPENDIX 

a,F2)(h, h) = ; PR2h7h,,,, + $, PR2h6h,,,h, - $ PR2h6ht,,, - 4 PR2h4h,h,,, 

3 
+ +$ R2Noh,, - $$ RahSh,2 + g R2h8h,, - - Rzh’h,h, 4 

+ g R2h6h,, + ; R2h5h,2 - ; R cot @h7h,, - f R cot ,8heh,2 

+ $ R cot /lh5h,, + ; R cot ,t?h4h,h, + 3h4h,, + 7h3hz2 



SYMBOLIC COMPUTATION OF EVOLUTION EQUATIONS 57 

a,!?(h, h) = - g P2R3h7h,,h,,, - -$ PzR3h6hzh:,, + 4z PR3h11h,,,,, 

+ 40320 
= PR3h10h,h,,,, + go PR3h10h,,& + 19381 , 5 1 2. PR3hghtmm 

+ & PR3hghz2h,,, + & PR3h8h,m&z + $$ PR3h8ht&,, 

8425 
- + 4480 

PR3heh h t reaz + 2520 
E9 pR3h’h ttxxx + g PR3h7hth,,,h, 

131 
+ m PR3h6hth,,,, + g PR3h6htths,, + s” PR3h5hth,,, 

+ & PR2 cot /3h7h~Jz~rr + & PR= cot /3h7h2as&2, 

-I- $, PR cot /3h6h,2h,,, $ ; PRh5h,,,,, + 3PRh4hm,zh, 

-I- PRh4h,,&h,, f ; PRh3h,2hz,, + ; PRh’h&, 

514407 
- 732160 R3h14h,,, + ;ff;;& R3h13h&h,, - y;;;;; R3h12htzz 

- ?f?&?& R3/$2h,3 - ??.?f!& R3hllhth,, - %!& R3#‘&&, 

- $$!$ R3h10httz + $%$ R3h10hth,2 - ?i%!& R3hsh h tt z 

- E R3hshtoht - E R3hahttt - w R3h8h 2h t z 

- ; R3h7hthtt - !$ R3h6ht3 - s R2 cot flhllh,,. 

- G R2 cot ,8hhlohJzh,, - z R2 cot ~hsht,, 

- $ R2 cot /3hgha3 - G R2 cot ph8htzh, - 17’ ’ 2240 R2 cot /3hah,h,, 

- g R2 cot jlh’h,,, + z R2 cot ,8h7hth,2 - s R2 cot /3h6hth,, 

- & R2 cot @i%th, - ; R2 cot j?h5ht2h, + $$ R2 cot2 ,8h’h,,h, 

- $j R cot2 j?h6ha3 - g Rhah,,, + z RLh 
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- g Rh6htz, - 39Rhehs3 - z Rh5h,h,, - y Rh5ht&, 

- F Rh4hthG2 - ; cot )Bh5hzzz - ; cot /3h4h&,, - 7 cot ,8h3hz3 
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